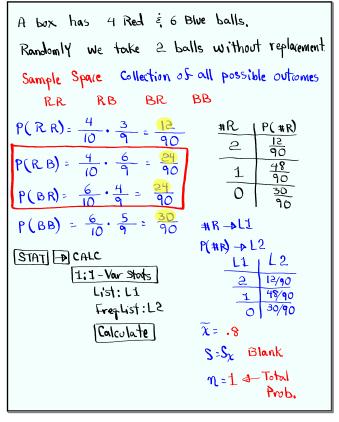


Feb 19-8:47 AM

Mar 24-1:46 PM


Suppose
$$P(A) = .4$$
, $P(B) = .5$, $P(A \text{ and } B) = .3$

1) $P(B|A) = \frac{P(A \text{ and } B)}{P(A)} = \frac{.3}{.4} = \frac{3}{.4} = \frac{7}{.15}$

2) $P(A|B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{.3}{.5} = \frac{3}{.5} = \frac{3}{.6}$

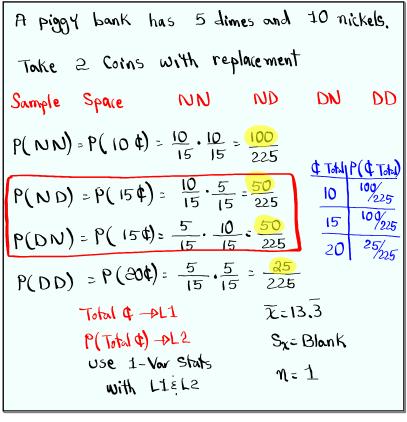
Total=1

Mar 24-1:58 PM

Mar 24-2:03 PM

P(at least 1 Red ball)=1 - P(No red Ball)

=1 - P(BB)


=1 -
$$\frac{30}{90}$$
 = 1 - $\frac{1}{3}$ = $\frac{2}{3}$

P(at least 1 Blue ball)=1 - P(No blue ball)

=1 - P(RR)

=1 - $\frac{12}{90}$ =1 - $\frac{2}{15}$ = $\frac{13}{15}$

Mar 24-2:15 PM

P(at least 1 dime) = 1 - P(No dimes)
=1 - P(NN)
=1 -
$$\frac{100}{225} = \frac{125}{225} = \frac{5}{9}$$

P(at least 1 nickel) =1 - P(No nickels)
=1 - P(DD)
=1 - $\frac{25}{225} = \frac{200}{225} = \frac{8}{9}$

Mar 24-2:27 PM

You are taking a quiz with 4 questions.

Each question has 3 choices, but one correct choice.

You are making random guesses.

C-D Correct, C-D Incorrect

CCCC P(All Correct)=\frac{1}{3}\cdot\frac{1}\cdot\frac{1}{3}\cdot\frac{1}{3}\cdot\frac{1}{3}\cdot\f

```
A Jeck of Playing Cards has 40 Cards,

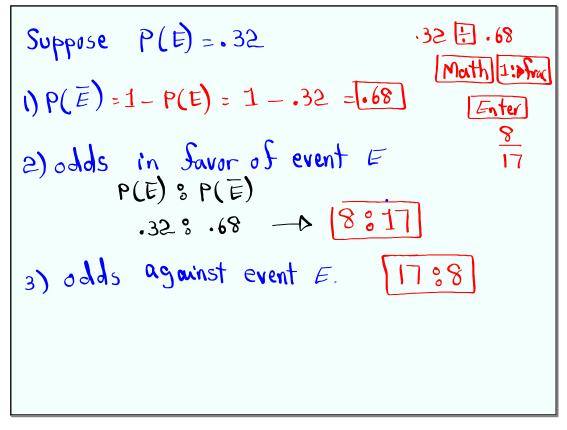
8 Saces, and 3 aces.

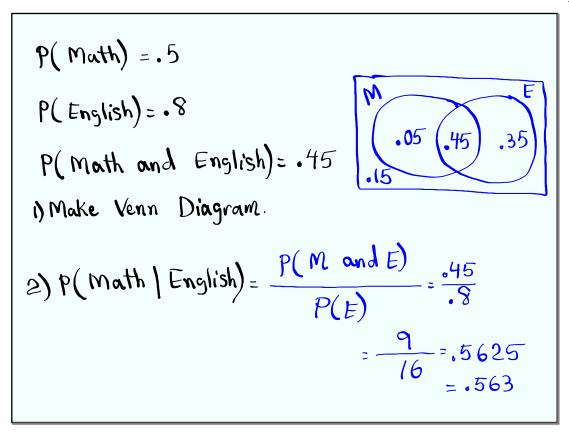
Is we randomly select one Card,

1) P (draw Sace)

= 8 40 = 5

Sind odds in Savor of Selecting a Sace Card.


# Sace: # Sace


8:32

Sind odds against Selecting a Sace Card.

431
```

Mar 24-2:39 PM

Mar 24-2:50 PM

5 Females, 10 males, Select 3 people

No replacement, order does not matter

P(3 Females) =
$$\frac{5}{15} \cdot \frac{4}{14} \cdot \frac{3}{13} = \frac{2}{91}$$

= $\frac{5\binom{3}{3} \cdot 10\binom{0}{0}}{15\binom{0}{3}} = \frac{10}{455} = \frac{20}{91}$

P(2F & 1M) = $\frac{5\binom{2}{3} \cdot 10\binom{0}{15}}{15\binom{0}{3}} = \frac{100}{455} = \frac{20}{91}$

FMM

FMF

MFF

P(1F & 2M) = $\frac{5\binom{1}{10}\binom{0}{2}}{15\binom{0}{3}} = \frac{225}{455} = \frac{45}{91}$

MFM

MMF

P(3 Males) = $\frac{5\binom{0}{10}\binom{3}{3}}{15\binom{3}{3}} = \frac{120}{455} = \frac{24}{91}$

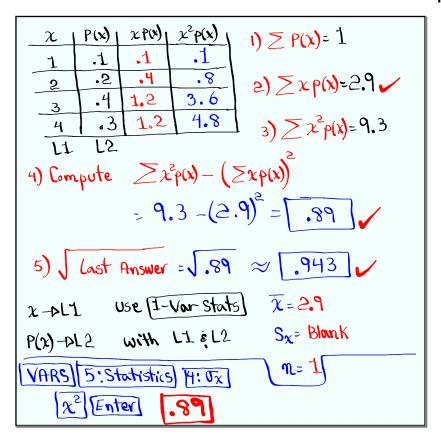
Mar 24-2:56 PM

P(at least 1 Female)=1-P(No Female)
$$=1-P(All males)$$

$$=1-\frac{24}{91}=\frac{67}{91}$$
P(at least 1 male)=1-P(No male)
$$=1-P(All Females)$$

$$=1-P(All Females)$$

$$=1-P(All Females)$$


$$=1-\frac{2}{91}=\frac{89}{91}$$

$$=1-\frac{20}{91}$$
Females —> L1
$$=1-\frac{1}{91}$$
Use 1-Vor stats with L1 \(\xi\) L2
$$=1-\frac{2}{2}$$

$$=$$

Mar 24-3:07 PM

Complete the Chart below				
$\frac{\chi}{\chi}$	P(x)	$\chi P(\chi)$	$\chi^2 P(x)$	1) \(\gamma P(\lambda) = 1
1	.2	.2.	.2	, = , , =
2	•5	1.0	2.0	$a) \geq \chi \rho(x) = 2.1$
3_	.3	.9	2.7	/2 1 / =
$= 3 \cdot (= 3^2 \cdot 3) \ge \chi^2 p(x) = 4.9$				
4) Compute $\geq \chi^2 p(x) - (\geq \chi p(x))^2$				
= 4.9 - 2.1 ² = [.49]				
5) [Last Answer = 5.49 = .7]				

Mar 24-3:22 PM